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Abstract. Deuteron properties and P-N elastic scattering in 1S0 and 3S1 −3 D1 channels are described
within the framework of a model containing non-local interactions that take into account quark exchange
processes. Comparisons with other theoretical results are also made.

PACS. 13.75.Cs Nucleon-nucleon interactions (including antinucleons, deuterons, etc.) – 25.10.+s Nuclear
reactions involving feq-nucleon systems – 27.10.+h A ≤ 5

1 Introduction

Due to the high accuracy that was achieved in the experi-
mental investigation of deuteron properties [1–3] and P-N
scattering [4], it has become possible to compare theoret-
ical predictions with experimental data and therefore to
check different models of the nucleon-nucleon interaction.
It is well known that at large separation distances the N-N
potential is mainly determined by one-pion exchange pro-
cesses while at short distances, nucleon structure should
be taken into account properly. The correct solution of
this problem can be obtained within the framework of a
fundamental theory such as QCD. However, up to now,
this program is far from complete. Therefore, a series of
phenomenological potentials such as Paris, Bonn, Argonne
and others containing a soft or hard repulsion at small
distances have been used. These potentials nicely repro-
duce the scattering phase shifts. However, there are some
discrepancies between the theoretical description of some
deuteron ground state properties and the experimental re-
sults. If one looks at the correlations between quadrupole
momentum Q and the asymptotic ratio of the S and D
waves η = AS/AD [1], the theoretical results almost lie on
a straight line for the different most popular N-N poten-
tials. Concerning the experimental value of η the following
remark could be done. In [5] the status of this problem is
discussed. There are two different experimental methods
to determine η. The first one is based on the pole ex-
trapolation method and gives η = 0.0264− 0.0275. These
experimental data lie far from the theoretical line. The
relativistic corrections and corrections due to two pion
exchange processes [6] do not give any significant improve-
ments. The second method deals with sub-Coulomb (d,p)
reactions and gives η = 0.0256(4) [7]. This value is in bet-

ter agreement with the theoretical predictions. However,
taking into account all the available experimental data
one can see that this problem is still open at the present
moment. Consequently, the nucleon structure should be
considered more carefully [5].

Up to very recently there was the same problem in
the triplet scattering length at-deuteron root-mean square
radius rD correlation [8]. However a recent analysis of
the scattering data including Coulomb distorsion [9] has
shown the agreement between theoretical and experimen-
tal results removing this discrepancy.

To improve the agreement with experimental results,
in [10,11] a deep local potential describing the P-N inter-
action has been proposed. In this case there is an addi-
tional spurious bound state that corresponds to a Pauli
forbidden state (PFS). In this way, a good description of
the deuteron ground state properties as well as scattering
phase shifts have been obtained. In [8,12] another differ-
ent way of describing the at−rD correlation has been pro-
posed. It consists in removing the discrepancy found with
realistic local potentials by means of a phenomenologically
added non-local contribution. In [8] the non-locality was
considered only in the S-wave. The introduction of non-
locality into the D-wave gives a much better description
of the at − rD and Q − η correlations [12]. However the
physical motivation behind this approach should be clar-
ified. The non-locality on NN force could also be found
in [15–17]. A rewiev of Moskow-type local potential and
non-local NN interactions can be found in [13].

An alternative approximation, that will be used in the
present paper, is the so-called quark cluster model. In it
the nucleon is considered as a shell model cluster. To work
out this approach, the Resonating Group Method (RGM)
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[14] should be used. However, to avoid the technical diffi-
culties encountered with this method, we have developed
another model that is, actually, a simplified version of
RGM. We will show that taking into account only the
Pauli principle, the deuteron ground state properties as
well as P-N scattering can be described. To do this, we will
introduce a non-local interaction and show that the PFS,
which are a consequence of the Pauli principle, are just
the eigenfunctions of the effective inter-nucleon Hamilto-
nian with zero eigenvalue. In this paper we are interesting
in the structure of the deuteron rather than in the gen-
eral problem of P-N scattering. Therefore only 3S1 −3 D1

(that are the same as for D-problem) and 1S0 (that is
added to complete the consideration) channels are taken
into account.

Notice that the non-locality in the NN interaction can
have other sources different from the Pauli principle. For
instance, some commonly used potentials (as the Paris
potential) have a p2 dependence that represents a non-
locality that may come from the effective character of the
degrees of freedom used for describing the NN systems
[15]. Minimal-relativity factors can also contribute to non-
local effects [16]. Also a phenomenological non-local NN
interaction which fits the NN data and produce the correct
triton binding energy has been recently considered [17].

The paper is organized as follows. In the first part
we will briefly describe the model and apply it to the P-
N interaction. In the second part we will compare our
results with those obtained with some potentials used for
descibing the deuteron and NN scattering. The summary
and conclusions are laid out in the last part.

2 Description of the model

The most popular approach in the microscopic cluster the-
ory is RGM. When it is applied to fermionic systems,
the effective intercluster Hamiltonian contains non-local
exchange terms. Due to technical difficulties, the appli-
cation of this method is strongly restricted. In order to
study the P-N problem in this way, one should introduce a
non-relativistic quark-quark interaction that is not defined
properly. Nevertheless, some calculations along these lines
have been performed [18]. In order to solve these problems,
some semi-phenomenological approaches to RGM could
be used, for instance the Orthogonality Conditions Model
[19]. This method gives the possibility of distinguishing
the microscopic dynamics of the quarks by a proper choice
of the intrinsic wave functions of the nucleons and the
inter-nucleon semiphenomenological potential.

However, in this paper we propose a model that is
another approximation to RGM. In it the P-N interaction
is described by an effective Hamiltonian H that consists
of an operator H0 that contains a local potential V 0 and a
non-local contribution W due to the exchange processes.

H = H0 +W (1)

In this sense we follow the RGM philosophy closely. The
non-local contribution that describes the quark-exchange

processes is short range. Therefore, at large enough distan-
cies, the P-N interaction is mainly governed by the local
potential V 0 included in H0.

Let us first discuss the direct potential. From the phys-
ical point of view, V 0 should contain the main contribu-
tion from the one-pion exchange effects that are described
by the one-pion exchange potential (OPEP). Therefore, in
the triplet channel we use the OPEP as the local potential
V 0 written as

V 0 = Vc(r) + Vt(r)S12

Vc(r) = V OPEPc (r)f(αr)

Vt(r) = V OPEPt (r)f3(αr)

V OPEPc (r) = V0
e−µr

µr

V OPEPt (r) = V0

(
1 +

3
µr

+
3

µ2r2

)
e−µr

µr
, (2)

where S12 is the tensor operator, f(α, r) = 1 − e−αr is
a cutoff function which regularises the singular potential
and is taken as in [10].

The parameters of the OPEP have been taken from
[10,11]. The effective pion mass is defined as follows

µ = (2/3mπ+,− + 1/3mπ0) = 138.03MeV

= 0.6995fm−1 (3)

The value of V0 is determined by the coupling con-
stant fπNN that is taken as f2 = 0.07766 and gives
V0 = −10.72MeV . The cutoff parameter α is taken as
α = 3.950832fm−1.

It is worth pointing out that the value of the constant
f2
πNN is under discussion at the present [20]. Arndt et al.

[21] found the optimal value for the constant f2
πNN to be

0.075. In turn Ericson et al. [22] used f2
πNN=0.0808. We

use in this work a constant f2
πNN that lies between the

values reported in [21] and [22].
At the same time, for a quantitative description of the

P-N interaction, other meson exchange terms should be
taken into account. It is well known that the central part
of OPEP is too weak to reproduce the P-N interaction in
a singlet channel where the tensor force gives no contri-
bution. Therefore in the singlet channel we complement
OPEP by a σ-meson exchange term. In [23] the value of
mσ is estimated as mσ = 500−600MeV . We approximate
Vσ by a Yukawa term with the recoil correction:

Vσ = − g
2
s

4π
mσ

(
1− m2

σ

4M2

)
e−mσr

mσr
f(βr), (4)

where the cutoff factor f(β, r) is similar to f(α, r) in (2.2).
The values of the parameters in (2.4) were taken to

be: g2
s/4π = 6.7 (the value that is suggested in [23] is 7.1),

mσ = 500MeV , β = 3.51273fm−1.
The physical six-quark (6q) many-particle wave func-

tion can be written as:

Ψ6q = AΨ̃6q, (5)
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where A is the antisymmetrization operator while Ψ̃6q

is the arbitrary 6q wave function. In the RGM ansatz
Ψ̃6q = ΨPΨNχPN , where ΨP,(N) is the internal wave func-
tion for protons or neutrons in terms of the intrinsic vari-
ables of the quarks; χPN is a function that depends on
the relative P-N distance r, and is called the variational
amplitude. In the shell model approach, Ψ̃6q is simply the
product of one-quark state wave functions. We define a
Pauli-forbidden configuration Ψ̃6q = Ψ̃PFS (Ψ̃6q 6= 0) if
the corresponding Ψ6q = 0. The relative motion vector
ΦPFS = 〈ΨPΨN |Ψ̃PFS〉r, where the integration is taken
over the intrinsic variables of P and N except r, is just the
PFS. In the RGM ansatz ΦPFS = χPN,PFS . To take into
account the PFS, one can orthogonalize it to the physical
relative motion wave function. This can be done in vari-
ous ways. For instance, one can apply the Orthogonality
Condition Model of Saito [19]. In the model with a deep
local potential [10,11], the PFS is just the spurious bound
state.

In our model we embed the PFS within the spectrum of
the effective Hamiltonian with zero eigenvalue. First of all,
to describe the P-N interaction, we consider the 3S1−3D1

and 1S0 channels with a given total angular momentum
J = 1. In the triplet channel there is a bound state that
corresponds to the deuteron ground state. One can define
the radial relative motion PFS vector with given S,L and
J as follows:

φJ,L,SPFS = 〈[[ΨNΨP ]SYL]J,L,S |Ψ̃PFS〉r, (6)

where the bracket [] means vector coupling and Y is the
spherical function of the relative P-N channel with a given
orbital angular momentum L. The integration in (2.6) is
taken over all intrinsic variables of P and N and over the
angular variables of r but not the radial variable r. To
calculate the PFS we consider the harmonic oscillator shell
model for quarks inside the nucleon. In the singlet channel
the PFS is written as

φJ=0,L=0,S=0
PFS = un=0,L=0(ν, r), (7)

where un,L(ν, r) is the normalized radial harmonic oscilla-
tor wave function with the radial quantum number n and
angular momentum L, while ν is the frequency parameter
defined as ν = µω/~. To take into account the non-locality
in the triplet channel, we choose the PFS as follows

φJ=1,L,S=1
PFS = aLun=0,L(ν, r), (8)

where L = 0, 2 and the coefficients aL are normalized by
the condition

|a0|2 + |a2|2 = 1. (9)

To choose the value of ν within the framework of the RGM
one can try to use it to fit the nucleon radius. However,
the shell model is too crude to describe the nucleon struc-
ture. It is known that exclusion of the PFS leads to the
appearance of an almost energy-independent node in the
intercluster relative motion wave function that is called
the ”structural” core. The position of this node rc corre-
sponds to the position of the effective NN repulsion in local

potential models. The value of rc is determined by the os-
cillator frequency parameter ν. Therefore, we will consider
ν as the parameter that reproduces reasonable values of
the repulsive core and nucleon radius at the same time.

At this moment we would like to discuss one interest-
ing possibility. From a physical point of view, the posi-
tion of the repulsive core in the NN channel (identified
with the structural core) can slightly depend on the rela-
tive energy and may decrease when the energy increases.
This effect can be obtained by increasing the oscillator
frequency parameter ν. As a consequence the size of the
nucleon decreases too. If one takes into account the fact
that the Compton wave length of the particle decreases
at high energy, the trick of using a parameter ν that in-
creases slightly when the energy is increased seems rea-
sonable. On the other hand, this gives the possibility of
obtaining a better description of scattering data as will be
shown later.

In the partial wave representation, the Schrödinger
equation will be written as a system of coupled equations:∑

L′

(H0
L,L′,S +WL,L′,S)ψJ,L

′,S = EψJ,L,S . (10)

In the triplet channel S = 1 with J = 1, the orbital mo-
mentum L runs over L = 0, 2, while in the singlet S = 0
channel with J = 0 only one equation with L = 0 sur-
vives. The local part H0

L,L′,S is calculated using the local
potential (2.2) plus (2.4) in the S = 0 channel.

In our approach the non-local part WL,L′,S is written
using H0 and the PFS given by (2.7) and (2.8) :

WL,L′,S =
∑
L1L2

H0
L,L1,S |φ

J,L1,S
PFS 〉λS〈φ

J,L2,S
PFS |H0

L2,L′,S ,

(11)
where the coefficients λS are chosen as:

λS = −

∑
L,L′

〈φJ,L,SPFS |H0
L,L′,S |φJ,L

′,S
PFS 〉

−1

. (12)

In this model for the intercluster Hamiltonian H it is easy
to check that the wave functions corresponding to PFS
φJ,L,SPFS given by (2.7) and (2.8) are orthogonal to the cor-
responding physical wave function ψJ,L,S , which is a so-
lution of (2.10) ∑

L

〈φJ,L,SPFS |ψJ,L,S〉 = 0, (13)

where again L = 0 for the singlet channel and L = 0, 2 for
the triplet.

Moreover, one can see that the PFS, which are equal
to φJ=0,L=0,S=0

PFS in the singlet channel and to the row(
φJ=1,L=0,S=1
PFS

φJ=1,L=2,S=1
PFS

)
in the triplet channel, are just the eigen-

vectors of the Hamiltonian H with zero eigenvalues.
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Table 1. Deuteron ground state properties obtained using different models are compared with experimental data. The results
of calculations with the Paris, Argonne, Reid soft core potentials and Moscow potential are taken from [10]. The results of the
present paper are labelled as Model. The results reported in [8,12] are also given

Paris? Argonne? RHC? [8,12] Moscow Model Exp.

E(MeV ) −2.225 −2.225 −2.2246 −2.2242 −2.2245 −2.2245890 −2.2245890(2)[30]

rD(fm) 1.9716 1.9569 1.953 1.9592 1.965∗ 1.966(13)[9,40]∗∗

1.971[40]

1.97535(85)[41]

η 0.0261 0.0265 0.0262 0.0287 0.0269 0.02710 0.0271(4)[32]

0.0252(1)[42]

0.0256(4)[7]

AS(fm−1) 0.8869 0.8776 0.8898 0.8814 0.8836 0.8838(4)[31]

0.8846(8)[33]

Q(fm2) 0.2789 0.286 0.2796 0.2862 0.285∗ 0.2859∗ 0.2859(3)[34]

µD(n.m.) 0.854∗ 0.8580∗ 0.857406(1)[35]

PD 5.77 6.13 6.497 6.544 6.75 5.86 6.0(2.0)[36]

5.0(2.0)[32]

rt(fm) 1.765 1.81 1.724 1.745 1.756 1.754(8)[29]

f2
πNN 0.078 0.081 0.0757 0.07745 0.07766 0.0776(9)[37]

0.075[42]

at(fm) 5.427 5.46 5.39 5.418 5.413 5.413 5.419(7)[29]

? the notation in [29]
∗ Means that relativistic corrections [24] are taken into account
∗∗ The deuteron point radius is taken from [40] where it is obtained from the charge radius given in [9]

3 Results

First of all, we will consider the ground state properties
of the deuteron which correspond to the triplet channel.
In this approach the local potential in the triplet chan-
nel coincides with the OPEP and in our model there are
three free parameters to be adjusted to the experimental
data: the oscillator frequency parameter ν, the cutoff pa-
rameter α and the admixture of the D- component in the
PFS a2. To satisfy the unitarity condition of the S- ma-
trix one should use real values for the coefficients of aL.
The values ν = νD = 4.7fm−2 and a2

2 = 0.22 are used. To
justify our choice one can look for the S- and D-wave func-
tions that are displayed in Fig. 1. In our case the nodes
in S- and D-waves coincide and this picture corresponds
to a local potential with a hard repulsion at rC ≈ 0.6fm
which is determined by ν and does not depend on angular
momentum L. On the other hand, the radius of the nu-
cleon (within the harmonic shell model without Coulomb
effects) calculated with this value of ν is 0.57fm.

Table 1 displays the results of our calculations together
with the experimental data and the results obtained us-
ing the phenomenologial Paris, Argonne and Reid soft-
core potentials reported in [10]. The results given in [8,
12] obtained with a phenomenological non-local part as
well as the results obtained with the deep local poten-
tial of [11] (labelled as Moscow) are also presented. In
this table the following quantities of the deuteron are pre-
sented: the binding energy of the deuteron E, the root
mean square radius rD, the asymptotic ratio of the S and
D waves η = AS/AD, the quadrupole momentum Q, the
magnetic momentum µD, the admixture of the D-wave

Fig. 1. S - and D - deuteron wave functions obtained using
our model

PD, the effective P-N range in the triplet channel rt and
the triplet scattering length at. For the sake of complete-
ness the value of the coupling constant f2

πNN used by the
different potentials is also given.

The relativistic corrections to rD, Q and µD have been
calculated according to [24] (see also [25,26]). The correc-
tions to rD are rather small. The value of Q decreases by
an amount of 1.8 · 10−3fm2 when the relativistic correc-
tions have been taken into account in all the considered
calculations, while the µD correction depends significantly
on the model used. Our data for Q and rD reported in Ta-
ble 1 do not contain the exchange meson currents (EMC)
that are corrections of 1/M3 order. However, it was re-
alized that they could give significant contributions [27].
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Fig. 2. Q
A2
s

as a function of η for different realistic local po-

tentials together with the experimental data. The results of
our model are presented by the cross. The Q as well as η are
reduced according to the coupling constant πNN [1]

In the potential models (like the present one) the pionic
degrees of freedom are not taken into account explicitely
and consequently, the EMC corrections have to be calcu-
lated perturbatively. However, the result strongly depends
on the type of πNN interaction. We have estimated these
EMC corrections using the masses and coupling constants
given in [27]. For the quadrupole moment they could vary
from 0.001 to 0.003 fm2 for the pseudoscalar coupling and
from 0.004 to 0.006 fm2 when the pseudovector coupling
is used. Realizing the significance of the EMC corrections,
we do not consider them in present paper and leave this
problem to be investigated in detail in the next future.

In view of the simplicity of our model, there is no strik-
ing discrepancies between the results obtained with it and
the experimental values as it can be seen from Table 1.

In Fig. 2 theQ−η correlation for the different models is
displayed. This figure has been taken from [1] and we have
added our result. One can see that the value obtained in
our model agrees with the experimental data. However, if
the EMC correction to Q is added , our value is shifted up
around of 3 % lying on the straightline of the theoretical
potentials.

There are other very important quantities that give
some insight into the inner structure of the deuteron. The
structure functions A(q2) and B(q2) that determine the
elastic scattering on an unpolarized deuteron are given by

A(q2) = F 2
C(q2) +

8
9
γFQ(q2) +

2
3
F 2
M (q2)

B(q2) =
4
3
γ(γ + 1)F 2

M (q2) (14)

, where γ = q2/4M2
D while FS , FQ and FM are the charge,

quadrupole and magnetic form factors of deuteron respec-
tively. They are determined by the P-N relative motion
wave function in the deuteron and by the inner structure
of nucleons. For the magnetic GM and electric GE form-
factors of nucleons we use the following parameterization
[28]:

GPM (q2)
µP

=
GNM (q2)
µN

= gM (q2)f(q2) (15)

and

GPE(q2) =
[(

1 +
q2

2M

)
1 + 3q2/2M2

1 + q2/2M2
gE(q2)

− 3q2

4M2
gM (q2)

]
f(q2) (16)

where

gE(q2) =
(1 + 3q2/4M2)(1 + q2/2M2)
(1 + q2/4M2)(1 + 3q2/2M2)

gM (q2)

gM (q2) = 1 (17)

and

f(q2) =
1

(1 + q2/2M)2
exp

[
− 1

2a

(
q2

1 + q2/2M

)]
(18)

The value of the parameters are a = 0.3GeV/c2 and M =
0.93828GeV .

The results of calculations of A(q2) and B(q2) in our
model are displayed in Fig. 3 and Fig. 4. One can see that
within the framework of the nonrelativistic approach, rea-
sonably good results are obtained up to q2 = 1(GeV/c)2.

The S and D wave phase shifts in the triplet chan-
nel are presented in Fig. 5. The dashed line has been ob-
tained when the parameters of our model (ν and a2) have
been fitted to describe the deuteron properties reported
previously. As pointed out before, the use of an oscilla-
tor frequency depending on energy seems reasonable and
can be useful. Therefore, we take the following energy-
dependence:

ν(E) = ν +AT (S)E, (19)

where ν is the frequency parameter of the deuteron used
previously, AT = 4.95 · 10−3fm−2MeV −1, AS = 3 ·
10−4fm−2MeV −1 and the T (S) indexes refer to triplet
and singlet channels respectively. The results of these cal-
culations are displayed in Fig. 5 and 6 by solid lines. In
the singlet channel case no difference is practically found
in the phase-shifts by using ν(E) or simply ν up to 350
MeV . One can see that the S-wave phase shifts are nicely
reproduced by our model. On the other hand, the fit of the
D-wave phase shifts is not so good. It can be understood
if one takes into account the fact that in our simple ap-
proach no spin-orbit interaction has been explicitly dealt
with.
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Fig. 3. Deuteron form factor A(q2) (see text for explanation).
The experimental data come from [43]

Fig. 4. Deuteron form factor B(q2) (see text for explanation).
The experimental data come from [44]

4 Summary

In this paper a model of intercluster dynamics with a non-
local interaction is applied to the problem of P-N inter-
action. This model is an approximation to RGM. In it,
the microscopic quark dynamics is hidden in the oscilla-
tor frequency and in the local part of the P-N interaction.

Fig. 5. The phase shifts in 3S1 and 3D1 channels obtained
in our model. The solid lines correspond to AT = 4.95 ×
10−3fm−2MeV −1 in (3.6) while the dashed lines correspond
to AT = 0fm−2MeV −1. The experimental data come from
[4](+), [38](4) and [39](¤)

Fig. 6. The phase shifts in 1S0 channels obtained in our model
with AS = 3× 10−4fm−2MeV −1 in (3.6). The experimental
data come from [4](+), [38](4) and [39](¤)

The deuteron ground state properties as well as the S-wave
scattering phase shifts up to 350 MeV are well reproduced
with this approach. The D-wave phase-shifts for large val-
ues of the energy are not reproduced so well for the reasons
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pointed out at the end of Section III. Our model contains
three free parameters in the triplet channel, namely the
cutoff α of the OPEP potential, the oscillator frequency ν
and the S-D wave admixture in the PFS a2. In the singlet
channel the model also has three parameters: the cutoffs
α and β of the OPEP and σ-meson exchange potentials
and the oscillator frequency ν. In the phase-shift analysis
one parameter more AT (S) was used.

In order to compare this model with the other approox-
imations to the RGM reported in the text, the following
remarks should be made : a) The PFS in our model are
embedded within the spectrum of the effective Hamilto-
nian as was done in [10,11]. However, in our approach the
energy of the PFS is fixed and simply set equal to zero,
which reduces the number of parameters. b) The non-local
character of the P-N interaction in our model is similar to
that of [8,12]. However, the non-local part is built up in a
regular way.

Useful discussions with J. Carbonell, J. Martorell and D.W.L.
Sprung are acknowledged. This work has been partially sup-
ported by Spanish DGICYT (grant PB95-1249) and Catalan
DGR (grant 1998SGR-00011).
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